defined the signature defect of the boundary of a manifold as the eta invariant, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s=0 or 1 of a Shimizu L-function.
ETA | Invariant theory | ETA SA | Eta Kappa Nu | Eta Ursae Majoris | Taubes's Gromov invariant | Rost invariant | Non ho l'età | Loop-invariant code motion | invariant theory | Eta Sigma Phi | Eta Draconis |