In mathematics, in the area of functional analysis and operator theory, the Volterra operator, named after Vito Volterra, represents the operation of indefinite integration, viewed as a bounded linear operator on the space L2(0,1) of complex-valued square integrable functions on the interval (0,1).
Vito Acconci | San Vito di Cadore | Volterra | Vito Scotti | Vito Fossella | Vito Corleone | San Vito al Torre | San Vito al Tagliamento | Vito Rizzuto | San Vito dei Normanni | San Vito | Vito Volterra | Vito Pallavicini | Vito Marcantonio | Vito Lopez | Vito Antuofermo | Vito Žuraj | Vito Vitale | Vito Spatafore | Vito Russo | Vito Nunziante | Vito Frazzi | Vito Di Giorgio | Vito | Maria Pia De Vito | Gioconda de Vito | Francesco da Volterra |
In 1934, Taylor, roughly contemporarily with Michael Polanyi and Egon Orowan, realised that the plastic deformation of ductile materials could be explained in terms of the theory of dislocations developed by Vito Volterra in 1905.