According to the Denjoy theorem, every orientation-preserving C2-diffeomorphism of the circle with an irrational rotation number θ is topologically conjugate to Tθ.
As a consequence of the Denjoy theorem, an orientation preserving C2 diffeomorphism ƒ of the circle is structurally stable if and only if its rotation number is rational, ρ(ƒ) = p/q, and the periodic trajectories, which all have period q, are non-degenerate: the Jacobian of ƒq at the periodic points is different from 1, cf Circle map.
Liouville's theorem | Chinese remainder theorem | Shannon–Hartley theorem | Quillen–Suslin theorem | Nyquist–Shannon sampling theorem | Hahn–Banach theorem | Fermat's Last Theorem | Buckingham π theorem | Thue–Siegel–Roth theorem | Szemerédi's theorem | Schottky's theorem | Riemann-Roch theorem | Pythagorean theorem | Nash embedding theorem | Müntz–Szász theorem | Malgrange–Ehrenpreis theorem | Kleene fixed-point theorem | Kakutani fixed-point theorem | Gauss–Bonnet theorem | Doob's martingale convergence theorem | Dirichlet's theorem on arithmetic progressions | Denjoy theorem | Birch's theorem | Wilkie's theorem | Wick's theorem | Whitney extension theorem | Weierstrass theorem | Wedderburn's little theorem | Vietoris–Begle mapping theorem | Veblen–Young theorem |