Liouville's theorem | Chinese remainder theorem | Shannon–Hartley theorem | Quillen–Suslin theorem | Nyquist–Shannon sampling theorem | Hahn–Banach theorem | Gustav Herglotz | Fermat's Last Theorem | Emmy Noether | Buckingham π theorem | Thue–Siegel–Roth theorem | Szemerédi's theorem | Schottky's theorem | Riemann-Roch theorem | Pythagorean theorem | Nash embedding theorem | Müntz–Szász theorem | Malgrange–Ehrenpreis theorem | Kleene fixed-point theorem | Kakutani fixed-point theorem | Gauss–Bonnet theorem | Fritz Noether | Doob's martingale convergence theorem | Dirichlet's theorem on arithmetic progressions | Denjoy theorem | Birch's theorem | Wilkie's theorem | Wick's theorem | Whitney extension theorem | Weierstrass theorem |
1910: Gustav Herglotz and Fritz Noether independently elaborated on Born's model and showed (Herglotz-Noether theorem) that Born rigidity only allows of three degrees of freedom for bodies in motion.
In mathematics, the Herglotz–Zagier function, named after Gustav Herglotz and Don Zagier, is the function
The theorem was first published by Thoralf Skolem in 1927 in his paper Zur Theorie der assoziativen Zahlensysteme (German: On the theory of associative number systems) and later rediscovered by Emmy Noether.