Cerf's theorem states that, provided M is simply-connected and dim(M) ≥ 5, the group of pseudo-isotopy diffeomorphisms of M is connected.
Liouville's theorem | Chinese remainder theorem | Shannon–Hartley theorem | Quillen–Suslin theorem | Nyquist–Shannon sampling theorem | Hahn–Banach theorem | Fermat's Last Theorem | Buckingham π theorem | Thue–Siegel–Roth theorem | Szemerédi's theorem | Schottky's theorem | Riemann-Roch theorem | Pythagorean theorem | Nash embedding theorem | Müntz–Szász theorem | Malgrange–Ehrenpreis theorem | Kleene fixed-point theorem | Kakutani fixed-point theorem | Gauss–Bonnet theorem | Doob's martingale convergence theorem | Dirichlet's theorem on arithmetic progressions | Denjoy theorem | Birch's theorem | Wilkie's theorem | Wick's theorem | Whitney extension theorem | Weierstrass theorem | Wedderburn's little theorem | Vietoris–Begle mapping theorem | Veblen–Young theorem |