The superposition theorem for electrical circuits states that for a linear system the response (voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, while all other independent sources are replaced by their internal impedances.
Liouville's theorem | Chinese remainder theorem | Shannon–Hartley theorem | Quillen–Suslin theorem | Nyquist–Shannon sampling theorem | Hahn–Banach theorem | Fermat's Last Theorem | Buckingham π theorem | Thue–Siegel–Roth theorem | Szemerédi's theorem | Schottky's theorem | Riemann-Roch theorem | Pythagorean theorem | Nash embedding theorem | Müntz–Szász theorem | Malgrange–Ehrenpreis theorem | Kleene fixed-point theorem | Kakutani fixed-point theorem | Gauss–Bonnet theorem | Doob's martingale convergence theorem | Dirichlet's theorem on arithmetic progressions | Denjoy theorem | Birch's theorem | Wilkie's theorem | Wick's theorem | Whitney extension theorem | Weierstrass theorem | Wedderburn's little theorem | Vietoris–Begle mapping theorem | Veblen–Young theorem |